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Abstract

We compute the memory effect at I + and I − for graviton scattering in two

ways. First, using linearised gravity and an ansatz for the non-linear graviton

contribution. Second, as a consequence of the soft factorisation theorem. We find

that the effect is the same for I + and I −, given the identification of null generators

provided by Ashtekar’s construction of i0. This surprising result can be understood

as a consequence of Strominger’s proposed symmetry for graviton scattering. We

also show that the memory effect for massive particle scattering can be derived from

a soft factorisation. In both cases we comment on the evolution of the Bondi mass.
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1 Introduction

The memory effect is the permanent displacement of a gravitational wave detector due

to gravitational waves. It was first associated to astrophysical processes in the weak-

field non-relativistic limit [1]. Assuming the radiation produced by these processes is

long wavelength, one finds a net displacement which arises from changes in the ‘mass

aspect’ of the objects. Later, Christodoulou [2] computed the memory effect in general

for any asymptotically flat spacetime. He found that both changes in the mass aspect

and the flux of massless radiation contribute to the effect. It was recently noticed that

Christodoulou’s result can be related to the soft factorisation of amplitudes originally

found by Weinberg [3]. This connection was made after earlier work by Strominger and

collaborators [4,5] revealed that Weinberg’s soft factor is a Ward identity for a conjectured

symmetry group of the scattering problem. In this report we study the memory effect

for graviton scattering and its relationship to the soft factor. We begin by reviewing

the conformal description of null infinity and derive how geodesic deviation near I is

related to the shear of outgoing null geodesics. In §3 we discuss the symmetries of I and

review the group of gauge-preserving symmetries known as the BMS group. We derive

the graviton soft factor in §4 and explain why it is tree-level exact, commenting on its

relationship to the BMS group. Then, in §5 we derive the known formula for graviton

scattering memory in two ways: making clear the relationship with the soft factorisation.

Finally, we show how the memory effect for massive particle scattering also follows from

a soft factor.

2 Null Infinity

To study gravitational radiation we are interested in spacetimes which become flat at long

distances from the sources of the radiation. Early work studied spacetimes whose curva-

ture decayed sufficiently fast along outgoing null geodesics [6]. A more helpful definition

was proposed by Penrose [7] who studied spacetimes that allow a conformal compacti-
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fication. Recall that Minkowski spacetime can be conformally rescaled and seen as the

interior of a manifold with boundary. In this case, the boundary is given by two null

hypersurfaces I ± and three points i±,0 (which are apexes of light cones). Following Pen-

rose, we can define a class of spacetimes that have a similar asymptotic structure. We call

(M, gab) asymptotically flat if a conformal rescaling of M is the interior of some manifold

with boundary (M̂, ĝab) which satisfies: (i) ĝab = Ω2gab on the interior of M̂ , for some

non-negative Ω; (ii) both Ω and ĝab are Ck smooth on M̂ for k > 2; (iii) Ω = 0 and

dΩ 6= 0 on the boundary of M̂ ; (iv) Einstein’s vacuum equations (with zero cosmological

constant) hold in a neighbourhood of the boundary. We claim that the boundary is locally

a shear-free null hypersurface. To establish this, recall that (in four dimensions) the Ricci

tensor of gab is related to the Ricci tensor of ĝab by

Rab = R̂ab + 2Ω−1∇̂a∇̂bΩ + ĝab

(
Ω−1∇̂2Ω− 3Ω−2∇̂aΩ∇̂aΩ

)
. (1)

Taking the trace with ĝab gives

Ω2R = R̂ + 6Ω−1∇̂2Ω− 12Ω−2∇̂aΩ∇̂aΩ (2)

By condition (iii), the boundary of M̂ is given by Ω = 0 and N̂a = −∇̂aΩ is a non-

vanishing normal to the boundary1. By (ii), R̂ab and ∇̂2Ω are Ck−2 smooth on and near

the boundary. Moreover, R = 0 by condition (iv). So equation (2) implies

N̂aN̂
a ≈ 0,

where ‘≈’ means equality when Ω = 0. Moreover, we decompose the Ricci tensor as

Rab = Φab + gabR/4 and use equation (1) to infer that

Φab = Φ̂ab + 2Ω−1∇̂a∇̂bΩ−
1

2
Ω−1∇̂2Ω,

1Our conventions are that N̂a ≡ ĝabN̂b = N b and Na = gabN
b = Ω−2N̂a.
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which implies

∇̂aN̂b ≈
1

4
ĝab∇̂cN̂

c.

So the boundary Ω = 0 is locally a null, shear-free hypersurface. In ref. [7] Penrose adopts

the condition that every null geodesic in M can be extended to have two intersections

with the boundary of M̂ . Assuming that M̂ is connected, this implies that the boundary

has two connected components I ± each with the topology of R × S2 [7]. We call these

null hypersurfaces future and past null infinity . In the compactification of Minkowski

space there is a point i0, spatial infinity, such that I + ∪I − ∪ i0 is a null cone (with i0

the apex). For Minkowski space this allows us to identify null geodesics in I + with those

in I −. However, by our definition of asymptotic flatness, the point i0 is not included2 in

M̂ . So, following Ashtekar and Hansen [8], we enlarge our definition of M̂ to include a

point i0 such that I + ∪I − ∪ i0 is a null cone.

2.1 The Asymptotic Behaviour of Fields

It is possible to deduce the asymptotic behaviour of conformal densities from their confor-

mal weights. To make this precise we must describe the outgoing null geodesics orthogonal

to I +; that is, those that intersect I + at one point only. Suppose that these geodesics

are generated by the flagpole la = oAōȦ for some spin frame oA, ιA. We specialise to a

frame that is parallel transported along these geodesics and introduce an affine parameter

r normalised so that la∇ar = 1. Then any scalar conformal density A of weight −w

admits an expansion

A = r−wA0 + r−w−1A1 + ...,

where the Ai are scalars that are constant along the la geodesics. This can be generalised

to the components of a conformal tensor density: one finds that a component with p oA

or ōȦ indices has leading order behaviour O(r−w−p). This is called the peeling theorem:

see appendix A for the proof. Using this result, it is possible to solve Einstein’s equations

2Minkowski space is asymptotically flat. In null coordinates u = tanU and v = tanV one has
g = −dudv = −Ω−2dUdV where Ω = cosU cosV . We can use U, V to describe the compactified
spacetime with ĝ = −dUdV . We identify i0 as U = −π/2 and V = π/2. But dΩ vanishes at this point.

3



for a general asymptotically flat spacetime in a neighbourhood of I [9, 10]. To do this,

it is helpful to write the field equations in terms of the 16 spin-frame components of

the connection ∇: which are called spin coefficients. We adopt the abbreviations D =

l · ∇, δ = m · ∇, δ′ = m̄ · ∇ and D′ = n · ∇. We will use lower case greek letters for

the spin coefficients of ∇BḂo
A while the corresponding components of ∇BḂι

A are given

primed greek letters: our conventions match §4.5 of [11]. Many of the spin coefficients

are conformal densities. For example consider σ ≡ oαδoα. The conformal transformation

gab → Ω2gab amounts to a rescaling of the spin frame according to oα → Ω−1oα, and

ια → ια. Under this, σ transforms as

σ 7→ σ̂ = ôAôBˆ̄ιḂ∇̂BḂ ôA = Ω−2σ + Ω−2oAoB ῑḂoB∇AḂ log Ω = Ω−2σ.

So σ has conformal weight −2 and has an asymptotic expansion σ = σ0r−2 + O(r−3). A

second important example is the Weyl tensor, Cabcd. This is the conformally invariant part

of Rabcd. We write Cabcd = ΨABCDεȦḂεĊḊ+c.c.. Notice that the symmetries of Rabcd imply

that ΨABCD has five independent components. So we define: Ψ0 = Ψ0000, Ψ1 = Ψ0001,

Ψ2 = Ψ0011, Ψ3 = Ψ0111, Ψ4 = Ψ1111. Now, given the conditions for asymptotic flatness

above, one can prove that ΨABCD ≈ 0 [12]. This means that we can define a smooth field

ψABCD with conformal weight −1 such that ψABCD = ΨABCD for the metric gab. But

then, by the peeling theorem for the components of ψABCD we find

Ψk = Ψ0
kr
−(5−k) + Ψ1

kr
−(6−k) +O(r−(7−k)).

Using expansions of this kind as an ansatz for the field equations one can solve for the

functions that appear at each order. We return to this in the next section.

2.2 The Bondi Gauge

We have already specialised to a frame that is parallel transported with respect to the

tetrad vector l and we have demanded that l is tangent to the outgoing null geodesics.
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In this section we will make further gauge choices. The resulting frame is said to be in

Bondi gauge because it allows for the introduction of the coordinates that were used by

Bondi [6]. We impose two conditions. First, we demand that the outgoing null geodesics

are tangent to null hypersurfaces. The intersections (‘cuts’) of these with I + will then

foliate I +. We impose this condition by demanding that l∗ = du for some u, where the ∗

denotes the dual with respect to gab. We call such a coordinate a ‘Bondi parameter’. By

the orthogonality of the tetrad, D′u = 1. So u is an increasing parameter on I +. Our

second condition is that the metric induced on these u = const. cuts is that of the unit

sphere. In stereographic coordinates, this metric is ds2 = 4P−2dzdz̄ ≡ 2γzz̄dzdz̄ where

P = 1 + zz̄. We now give the result of solving the field equations in Bondi gauge. Note

that, in spin coefficients, the first gauge condition implies that ρ is real and τ = ᾱ + β.

Moreover, since our frame is parallel transported the spin coefficients involving D vanish:

κ = ε = γ′ = τ ′ = 0. The leading behaviour of the nonvanishing spin coefficients is then

ρ = −r−1 +O(r−3) α = −β′ = 1
2
zr−1 +O(r−2) σ′ = − ˙̄σ0r−1 +O(r−2) (3)

σ = σ0r−2 +O(r−4) β = −α′ = −1
2
z̄r−2 +O(r−2) ρ′ = ρ′0r

−1 +O(r−2) (4)

τ = −1

2
Ψ0

1r
−3 +O(r−4) γ = −ε′ = −1

2
Ψ0

2r
−2 +O(r−3) κ′ = Ψ0

3r
−1 +O(r−2). (5)

Notice that 2γ = −laD′na ≈ 0. So, for a Bondi parameter u, 0 = D′2u ≈ nanb∇a∇bu.

The field equations also determine the leading behaviour of two Weyl tensor components3:

Ψ0
3 = ð ˙̄σ0 and Ψ0

4 = −¨̄σ0. Moreover, one can expand the Bianchi identity for the Weyl

tensor (∇AȦΨABCD = 0) using the asymptotic behaviour of the Ψk. For example,

Ψ̇0
2 − σ0Ψ0

4 + ðΨ0
3 = 0. (6)

This allows us to define a mass which is monotonic on I +. First, we define the mass

3We use the spin weighted derivative ð. On global projective coordinates πi for CP1 f has spin weight
s if f(λπ, λ̄π̄) = λ−sλ̄sf(π, π̄). Multiplication by (πiπ̄i)−s is an isomorphism with the homogenous
holomorphic functions of weight −2s. Then ð can be defined as ∂ acting on the homogenous weight
−2s functions corresponding to the spin weight s functions [13]. See chapter 4 of [11] for coordinate
expressions. It is the covariant derivative Dz employed by Strominger [4] up to a factor of 2P .
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aspect Ψ = Ψ0
2 + σ0 ˙̄σ0 (see also ref. [14]). Using equation (6),

Ψ̇ = σ̇0 ˙̄σ0 − ð2 ˙̄σ0. (7)

Integrating the mass aspect over a u = const. cut we define (in agreement with equation

(9.10.9) of ref. [12])

MB(u) ≡ − 1

4πG

∫
dµΨ(u, z, z̄),

where dµ is the measure on the sphere. MB corresponds to the ADM mass near i0. (The

other l ≤ 1 components of Ψ give the ADM momentum.) Combining this with equation

(7) we find

ṀB ≡ −
1

4πG

∫
dµ Ψ̇ = − 1

4πG

∫
dµ σ̇0 ˙̄σ0 ≤ 0, (8)

since ð2 ˙̄σ0 has no l = 0 component. This is the mass-loss formula. Notice that σ̇0 ˙̄σ0/4πG

can be interpreted as the flux of gravitational radiation at I +. In the rest of this section

we describe the translation to a system of Bondi coordinates. We can use u and r, together

with some xi, to form a system of coordinates. It follows from our discussion above that

n has coordinate components

n =
∂

∂u
+ U

∂

∂r
+X i ∂

∂xi
,

for some functions U,X i. The O(r0) component of U is, after applying the field equations,

equal to ρ′0. (In particular, see equation (10l) and the ensuing discussion in ref. [10]). By

orthogonality with l, we find that m takes the form

m = ω
∂

∂r
+ ζ i

∂

∂xi
.

In these coordinates, we can write the inverse metric gab = 2(l(anb) − m(am̄b)) in terms

of the functions U,X i, ω, ζ i: which are partially fixed by the field equations. Notice that

g00 = g0i = 0 and g01 = 1. This makes it easy to compute the metric gab which must

satisfy g11 = g1i = 0 and g01 = 1. To be explicit, gj0 = −gjkgk1 and g00 = −g11 +g1igijg
j1,
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where gij is the inverse of gij. Using this and the asymptotic expansions for U,X i, ω, ζ i [9]

one finds

g =

(
−1− ReΨ

r

)
du2 − 2dudr + 2r2γzz̄dzdz̄

+
(
rγzz̄σ̄

0dz2 + 2P−1ð̄σ̄0dudz + c.c.
)

+ subleading. (9)

(We have changed signatures to agree with ref. [4].) We will make particular use of

σ̄0 = lim
r→∞

1

r

P 2

2
gzz, (10)

to infer the asymptotic shear from the metric in Bondi gauge.

2.3 Geodesic Deviation

Timelike geodesics near I + are to a good approximation given by lines of constant (r, z, z̄)

in some Bondi frame. From equation (9) one sees that changes in the separations of these

worldlines will arise as σ0 evolves with u. In this section, we will describe the geodesic

deviation of timelike geodesics near I + and confirm that the leading order deviation is

shearing proportional to σ0. Consider a geodetic timelike congruence with tangent vector

V a normalised so that V aVa = 1. We proceed in two steps: (i) choosing a conformal

factor adapted to the congruence, and (ii) choosing a null tetrad. Let V̂ a be the smooth

extension of V a to the compactified spacetime and notice that V̂aV̂
a = Ω2. It follows4

that V̂ a ≈ AN̂a for some non-vanishing scalar A. We rescale Ω so that V̂ a ≈ N̂a on I +

and we choose to extend Ω off I + such that

V a = Na +O(Ω2) and V aN̂a = 0. (11)

4We have V̂ a = V a on intM̂ and V 2 = 1 on intM̂ so that V̂ a is non-vanishing on ∂M̂ . Then the
pullback of V̂ to TI + by the inclusion is non-vanishing and null. But the induced metric on I +, given
in §3, has only one degenerate direction: ∂/∂u.
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That is, Ω is constant along the timelike geodesics5. Given this choice

N̂aN̂a = −Ω2 +O(Ω3).

which follows from (V̂ a − N̂a)(V̂a − N̂a) = O(Ω4). We also find

V a∇aN
b = O(Ω2), (12)

which follows by writing V a = Na + Ω2Qa and acting with the covariant derivative. For

our purposes, we choose a tetrad (in Bondi gauge) scaled so that l̂a∇̂aΩ ≈ −1. By

standard arguments, one finds N̂a = (1 + O(Ω2))n̂a + O(Ω3) (this is derived in appendix

A). It then follows from (11)(a) that V a = na +O(Ω2). Condition (11)(b) further implies

that, in Bondi coordinates, na does not have a ∂/∂r component at leading order. In the

notation of §2.2 U = O(Ω) and so ρ′0 = 0. We now use this frame to study the geodesic

deviation of the timelike congruence6. Let sa be a connecting vector orthogonal to V a

and satisfying £V s
a = 0. We write its tetrad components as sa = ala + bna + z̄ma + zm̄a.

The orthogonality condition implies that a = O(Ω2) and, using (11)(b), V b∇b a = O(Ω2).

All that remains is to expand £V s
a = 0, which can be written as

V b∇bs
a = sb∇bV

a.

We evaluate the left hand side to find

LHS = V b∇bs
a = ḃna + bD′na + ( ˙̄zma + z̄D′ma + c.c.) +O(Ω2).

For the right hand side, notice that sa∇aV
b = sa∇an

b +O(Ω2). So

RHS = z̄δna + zδ′na +O(Ω2).

5Ludvigsen [15] chooses Ω to satisfy V aN̂a = 0 and V a∇aN
b = 0. However, his argument still holds

for V a∇aN
b = O(Ω2). Our conditions, though weaker, do imply V a∇aN

b = O(Ω2) and so permit the
same analysis.

6We are doing little more than deriving the propagation equations for a null congruence in a special
case. The general solution is not much more complicated: see §7.1 of Penrose-Rindler [12].

8



Here we have used D′na = O(Ω2), which follows from equation (12). Contracting both

sides with la gives

ḃ = z̄(laδna − laD′ma) + z(laδ′na − laD′m̄a).

In spin-coefficients, laδna − laD′ma = α′ + β̄′. So, referring to equations (3)-(5) we find

ḃ = O(Ω2). Similarly, contracting with m̄a gives

−ż = z̄(−maD
′ma +maδn

a) + z(−maD
′m̄a +maδ

′na),

where we can identify the expansion scalar ρ′ = maδ′na and the shear σ′ = maδna. Clearly

maD
′ma vanishes. Moreover, in spin coefficients, maD

′m̄a is γ+ε̄′, which vanishes to order

O(Ω2). So referring to equations (3)-(5) we find that

ż = Ω ˙̄σ0z̄ +O(Ω2). (13)

Having thus found the evolution of the connecting vector sa, we can determine the changes

in the proper separations of the geodesics. To first order in Ω we can integrate equation

(13) between some ui and uf to find a change

∆z = Ω∆σ0z̄ +O(Ω2).

The norm of sa at ui is

s2
i = −2(l(anb) −m(am̄b))s

a
i s
b
i = 2zz̄ +O(Ω2),

for some initial value of z. So the change in proper distance is

∆s =
s2
f − s2

i

sf + si
=

Ω

si
(∆σ0z̄2 + ∆σ̄0z2) +O(Ω2),
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which we can write as

∆s

si
=

Ω

2

(
∆σ0 z̄

z
+ ∆σ̄0 z

z̄

)
. (14)

This agrees with equation (4.5) in ref. [3].

3 Asymptotic Symmetries

The scattering of massless particles is naturally formulated in terms of data supported

at I ±. We thus anticipate that we should study symmetries of null infinity in order to

derive consequences for the scattering problem. Recall that ĝab, and thus the metric it

induces on I , is only defined up to a conformal rescaling of Ω. That is, the symmetries

of I are not the isometries, but rather the conformal isometries of the metric on I . We

call V an asymptotic conformal Killing vector (CKV) if £V gab = φgab +O(Ω) for smooth

φ. If V̂ is an extension of this V to M̂ , then £V̂ ĝab ≈ V (φ)ĝab. Thus, the pullback of V̂ to

I + by the inclusion I + ↪→ M̂ is a CKV of I +. In this way, asymptotic CKVs induce

symmetry transformations on I . However, given a CKV on I there may be many ways

to extend it to an asymptotic CKV on the original manifold (M, g). Let us now specialise

to Bondi gauge. We would like to find all the conformal transformations of I + that

preserve the gauge conditions. The induced metric on I + is the pullback of ĝab by the

inclusion map. We use equation (9) to find that induced metric is

h = 2γzz̄dzdz̄.

Notice that it is degenerate since h(∂u, X) = 0 for all vectors X. We see that h is invariant

(up to conformal scaling) under (i) the 2d conformal transformations of the sphere, and

(ii) any replacement of the form u 7→ f(u, z, z̄). Consider case (i). These are the Mobius

transformations z 7→ z′ = (az+ b)/(cz+d) (for any a, b, c, d ∈ C satisfying ad− bc = +1).

Under this replacement, h transforms as h 7→ ω2h where

ω =
1 + zz̄

|az + b|2 + |cz + d|2
.
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By construction, this is accompanied by a rescaling of the conformal factor: Ω 7→ ωΩ.

Thus, in order to preserve the gauge condition D′u ≈ 1, we must demand that the Bondi

parameter transforms as u 7→ ωu. We now consider case (ii). Recall the condition that

Bondi parameters must satisfy D′2u ≈ 0. This restricts us to transformations of the form

u 7→ g(z, z̄)u + h(z, z̄). However, we are further restricted by the condition D′ ≈ 1. So,

unless we simultaneously perform a transformation of type (i), we must have g(z, z̄) = 1.

Thus, the gauge preserving conformal transformations are

z′ =
az + b

cz + d
, u′ =

1 + zz̄

|az + b|2 + |cz + d|2
u+ h(z, z̄). (15)

This is called the BMS group, B. We can write it as a product B = SnSL(2)C where S is

the normal subgroup of supertranslations : u 7→ u+h(z, z̄). Much like the Poincaré group,

while B/S ' SL(2)C, we cannot identify a canonical Lorentz subgroup. Indeed, any given

L ⊂ B isomorphic to SL(2)C can be transformed to a distinct subgroup s−1Ls ' SL(2)C,

for some nontrivial s ∈ S. In the Poincaré group, each Lorentz subgroup corresponds

to a choice of origin in Minkowski space. For B we see that each subgroup corresponds

to a cut of I +. That is, the Lorentz subgroups can be parameterised by the functions

f(z, z̄) on the sphere. On the other hand, we can identify a subgroup of T ⊂ S that

we call translations. This is motivated by considering Minkowski space. Here, the Bondi

parameters u (up to scaling) correspond to a choice of constant timelike vector v (and

hence a choice of non-intersecting light cones that foliate I +). Let pa be a future-

pointing null vector corresponding to the point z on the sphere (unique up to scaling).

We define the u coordinate of the point on I + reached by the null ray through x with

tangent p as u = p · x/p · v. So, take coordinates xa such that v = ∂/∂x0. Then

pa ∝ (1 + zz̄, z+ z̄,−i(z− z̄), 1− zz̄) and under a translation, xa 7→ xa + aa, the retarded

time transforms as

u 7→ u+K, where K = a0 + (a1 − ia2)
z

1 + zz̄
+ (a1 + ia2)

z̄

1 + zz̄
− a3 (zz̄ − 1)

1 + zz̄
.
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That is, translations correspond to supertranslations of u by the l ≤ 1 spherical harmonics.

For this reason we define the translation subgroup T ⊂ S of a general asymptotically flat

spacetime as supertranslations by the l ≤ 1 spherical harmonics. This means that energy

and momentum conservation can be defined. On account of the large number of Lorentz

subgroups, angular momentum conservation is more subtle7 [17].

A Note on Coordinate Transformations

While the transformations described above are conformal isometries of I ±, they do not

specify how the Bondi coordinates on the neighbourhood of I should transform in order

for our coordinate expressions to remain in Bondi gauge. Alternatively, we could ask

how the tetrad associated to a system of Bondi coordinates ought to transform in the

neighbourhood of I . Let us focus on supertranslations. Consider a vector field V whose

pullback to I + is a supertranslation generator: V̂ ∗ = f(z, z̄)∂u. Then, the requirement

that £V g leaves g, equation (9), in the form of a Bondi metric uniquely determines V up

to the addition of subleading terms. One finds

V = f∂u −
1

r
γ−1
zz̄ ∂̄f∂ −

1

r
γ−1
zz̄ ∂f∂̄ + γ−1

zz̄ ∂∂̄f∂r.

The associated coordinate transformations are δz = −r−1γ−1
zz̄ ∂̄f and δr = γ−1

zz̄ ∂∂̄f . More-

over, the mass aspect transforms as δΨ = fΨ̇ and the asymptotic shear transforms as

δσ0 = −2γ−1
zz̄ ∂

2f + fσ̇0. For a finite supertranslation, we see that the Bondi frame asso-

ciated to the advanced time u′ = u+ f has asymptotic shear

σ′
0
(u) = σ0(u)− 2γ−1

zz̄ ∂
2f.

For simplicity, we have given σ′0 at the point (u, z, z̄) in the original coordinates. The

function σ′0(u′, z′, z̄′) can be found by integrating the infinitesimal transformations above.

7Penrose and Newman [16] proposed the condition σ0 → 0 as u→ −∞. This fixes the supertranslation
freedom (leaving translations) and thus defines a Poincaré group. They argued that this is in fact a
coordinate choice in this case of linearised gravity (i.e. not a restriction on the allowed spacetimes). One
could then fix an SU(2) subgroup by choosing some canonical timelike vector like the ADM momentum.
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In terms of the tetrad associated to the coordinates one finds that a supertranslation

induces a null rotation of the tetrad around na given by ιA 7→ ιA and oA 7→ oA − r−1ðf .

One can then compute the same transformation for σ0 (see, e.g., §1.3 of [18]).

4 The Graviton Soft Factor

Consider the scattering of n gravitons. In the soft limit – in which the energy of the nth

graviton is small – the n-particle amplitude factorises into the product of the correspond-

ing (n− 1)-particle amplitude and a soft factor [19]. In this section we derive this result.

Let κ =
√

32πG be the gravitational coupling constant. The Einstein-Hilbert action is

SEH =

∫
d4x

2

κ2

√−gR. (16)

To make our calculation as efficient as possible, we take g̃ab =
√−ggab as our dynamical

field8. This gives a simple expression for the Lagrangian, since

√−gR =
1

4

(
g̃abg̃cmg̃dn −

1

2
g̃abg̃cdg̃mn − 2δbdδ

a
mg̃cn

)
∂ag̃

cd∂bg̃
mn (17)

We perform an expansion g̃ab = ηab + κφab (such that φab is dimensionful and has kinetic

terms that do not involve the coupling). It is easy to identify the cubic terms in equation

(17) and read off the vertex factor. For three incoming modes with momenta pi and

indices aibi we have

Va1b1a2b2a3b3 = −iκ
2

[
p1
a3
p2
b3

(
2ηa1a2ηb1b2 −

1

2
ηa1b1ηa2b2

)
+ 2q2

a1
q1
b2
ηb1a3ηb3a2

+q1 · q2

(
1

2
ηa1b1ηa2a3ηb2b3 +

1

2
ηa2b2ηa1a3ηb1b3 − 2ηb1a2ηa1a3ηb2b3

)]
+ even perms. (18)

In this expression, we implicitly symmetrise over all index pairs aibi. To define a prop-

agator, a partial gauge fixing must be performed (as in quantum electrodynamics). We

8This introduces a functional determinant in the path integral which is absorbed into the normalisa-
tion.
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leave details of this to ref. [20] and choose the gauge in which the propagator takes the

form:

Daba′b′(k) =
−i
2k2

(ηaa′ηbb′ + ηab′ηba′ − ηabηa′b′) .

Let Mn be the scattering amplitude for n gravitons with momenta pi and polarisations

εi. For the nth graviton we will write pn = q and εn = ε and consider Mn in the soft

limit q → 0. To be systematic, consider first the tree-level amplitude Mn,tree in the soft

limit. The leading contributions come from diagrams where the soft graviton is attached

to external on-shell momenta by a cubic vertex: see figure 1. These diagrams have a pole

since they include a propagator with momentum pi± q for some on-shell pi. That is, they

include a factor of 1/(pi± q)2 = ±1/(2q · pi). These are the only tree-level diagrams with

soft poles. In all other diagrams the soft graviton is either attached to an internal line

via a cubic vertex or attached to any line via a vertex that is quartic or higher. In any

of these diagrams, none of the propagators attached to the soft vertex have momentum

p ± q for on-shell p: so the q · p pole does not arise. We can thus compute the leading

order contribution to Mn,tree in the soft limit:

Mn,tree =
∑
i

Mcd
n−1,tree(p

i + ηiq)Dcdc′d′(p
i + ηiq)V c′d′mnabεamnεab + subleading

= −i
∑
i

Mcd
n−1,tree(p

i + ηiq)
(
2Vcd

mnab − ηcdVeemnab
) εimnεab

4ηipi · q + subleading.

We writeMcd
n−1,tree(p

i+ηiq) for the (n−1)-graviton amplitude with momenta pj for j 6= i

and pi replaced by pi + ηiq. Here, cd is the index pair for the ith particle. We define ηi

to be a sign that is positive if the soft graviton and qi are both outgoing or both ingoing;

else it is negative. (See figure 2 for the diagrams corresponding to these cases.) In the

soft limit, the vertex factor with momenta (pi + ηiq, pi, q) simplifies to

V cdmnab =
iκ

2

[
pai p

b
i

(
2ηcmηdn − 1

2
ηcdηmn

)
+ 2pcip

n
i η

daηbm
]

+O(q).

Notice that equation (18) was quoted for incoming momenta: so we have picked up a minus

sign to account for the fact that either pi + ηiq or pi is outgoing. Using εiabη
ab = εiabp

b
i = 0,
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we find

Mn,tree =
κ

2

∑
i

ηipiap
i
bε
ab

p · q Mn−1,tree(p
i + ηiq) +O(q0).

On account of the simple structure of tree amplitudes we can writeMn−1,tree(p
i + ηiq) =

Mn−1,tree +O(q). We then find

Mn,tree =
κ

2

∑
i

ηipiap
i
bε
ab

p · q Mn−1,tree +O(q0).

Surprisingly, this result is tree-level exact. To see this, consider just one of the diagrams

that appears in the tree-level sum (figure 1). We can consider three types of loop cor-

rections to this term: (i) factorizable corrections toMn−1,tree, (ii) factorizable corrections

to the soft vertex, and (iii) non-factorizable corrections. Here, a ‘factorizable’ diagram is

one that has a propagator which, if removed, would give two disconnected diagrams, with

one diagram involving only pa and the soft graviton. We claim that diagrams of type (ii)

and (iii) do not contribute at leading order in the soft limit. This is easy to see for case

(ii). All diagrams of this type have a coupling factor of κk for k ≥ 3. (The lowest order

terms are shown in figure 3.) On dimensional grounds, since [κ] = −1, these diagrams

must have a factor of (q · pa) or higher compared to the tree-level diagram: and so they

are subleading in the soft limit. Case (iii) is more involved. The leading order 1-loop

non-factorizable contribution is given in figure 4. The contribution of this diagram is

∫
d̃lMn,tree(q − l, pi + ηil)D(q − l)V (−q, q − l, l)D(l)V (pi, ηil,−pi − ηil)D(pi + ηil)εεi,

where we are suppressing the Lorentz indices and writing the loop integration measure

as d̃l. (Notice that the momenta have been chosen to match our convention that V is

for all-incoming momenta.) By power counting, some of the summands in this integrand

have an infrared divergence. The finite integrals do not have a soft pole, so we focus

on checking the infrared divergent term. We expand the vertex functions in the loop

momentum l to find, after applying qc′ε
cc′ = ηcc′ε

cc′ = 0, that

V (−q, q − l, l)ε = iκqmqm′ηacηa′c′ε
cc′ +O(l),
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where the mm′ indices connect to the l propagator and the aa′ indices connect to the

q − l propagator. The result for the other vertex is similar. We expand the tree-level

amplitude, Mn,tree(q + l, pi + ηil) = Mn,tree + O(l), to find that the infrared divergent

part is

−iκ2(q · pa)2Mn,tree

∫
d̃l

1

(l − q)2l2(l + ηapa)2
.

The integral is standard: in d = 4 − 2ε dimensions it has a ε−2 divergence and it is

proportional to (q · pa)−(1+ε) (see [21]). So, the term is proportional to q · pa and, in the

soft limit, it contributes only at sub-subleading order. Bern [22] argues that higher order

and n-loop non-factorizable contributions are also subleading due to the powers of q and l

that appear in the vertices9. We conclude that only loop corrections of type (i) contribute

at leading order in the soft limit; it follows that

Mn =
κ

2

∑
a

ηapaαp
a
α′ε

αα′

p · q Mn−1 +O(q0). (19)

This is the graviton soft factorisation theorem. Precisely the same factor is found for

the emission of soft gravitons by scattering scalars or fermions. These particles can be

massive. In this case attaching the soft graviton to external lines gives factors of the form

[(ηq + p)2 +m2]−1 = [2η q · p]−1, since the external momenta are on-shell. Thus the same

pole arises that we found for graviton amplitudes. A similar factor can be found for soft

photons and soft gluons. However, for gluons the non-factorisable infrared divergences

discussed above contribute at leading order. It was recently found [5] that the graviton soft

factorisation, equation (19), is equivalent to the Ward identity for the group of diagonal

supertranslations. This is the subgroup of S+×S− comprising supertranslations that are

the same on I + and I −: given that null generators are identified at i0. These diagonal

supertranslations can be generated by operators Q(f) on the state space of asymptotic

states. This state space was originally formulated by Ashtekar [24, 25] and admits a

symplectic structure. Since the operators Q(f) commute amongst themselves, and since

the Hamiltonian can be identified as a generator Q(g) for some timelike g ∈ T , Strominger

9In fact, contributions at O(q0) are from at most 1-loop diagrams, and O(q) from at most 2-loop
diagrams. [23].
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conjectured that [Q(f), Ŝ] = 0, where Ŝ is the (unknown) gravity S-matrix. The matrix

elements of [Q(f), Ŝ] then yield a Ward identity that is equivalent to the soft factorisation

(after performing two derivatives).

5 The Memory of Graviton Scattering

The displacement of neighbouring masses near I ± is related to changes in the asymptotic

shear σ0 by equation (14). It is the purpose of this section to derive this change in σ0

for graviton scattering. Earlier we found a field equation, equation (7), which can be

integrated to give [14]

ð2∆+σ̄0 =

∫
du σ̇0 ˙̄σ0 −∆+Ψ. (20)

We write ∆+σ̄0 =
∫

du ˙̄σ0 for the change on I +. This equation is equivalent to Christodoulou’s

system of equations (10)-(12) in ref. [26]. There is a similar equation for I −. The right

hand side has mass dimension +1 and we might guess that for graviton scattering it takes

the form
∑
Ei δ

2(z − zi), for some energies Ei. This guess is essentially correct. At first

we will derive this using linearised gravity in the spirit of the original literature [1,27,28].

Of course, linearised gravity is not valid for hard gravitons: so we include hard gravitons

as a contribution to the stress tensor. This näıve calculation is performed on globally

flat space. Surprisingly, it is possible to rederive the same result under the much weaker

assumption of asymptotic flatness. We do this in §5.2.

5.1 Memory from Linearised Gravity

Einstein’s equation follows from equation (16) and is Gab = Rab− 1
2
gabR = 0. We expand

gab = ηab + hab and write Gab = G
(0)
ab + G

(1)
ab = 0, where G

(0)
ab is the linear contribution.

Using diffeomorphism invariance we choose a gauge in which hab is traceless (ηabhab = 0)

and transverse (∂ahab = 0). Then G
(0)
ab = −1

2
∂2hab, where ∂2 = ηmn∂m∂n. Recall that the
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advanced and retarded Green’s functions for −∂2 are

K±(x, y) =
1

4π |x− y| δ(x
0 − y0 ± |x− y|),

with −∂2K±(x, y) = δ(x− y). The delta function has support on the past (future) light

cone of x. Near I , gravitons are momentum eigenstates and we can describe them using

an ansatz for the effective stress tensor: κ2Tab/2 = G
(1)
ab . (We are being consistent with

the normalisation implied by equation (16).) In transverse-traceless gauge there is only

one term at second order:

G
(1)
ab =

1

4
hkl,ahk′l′,bη

kk′ηll
′
+O(h3).

For momentum eigenstates near I ±, hab ∼ Ω εab e
iEk·x, where ka is a future-pointing

null vector normalised by k0 = 1. By our gauge choice we require εabk
b = εabη

ab = 0.

Substituting this above we infer that the effective stress tensor has the form Tab = kakbT00,

where T00 = O(Ω2)10. We could write T00 = Ω2F +O(Ω3) where F is a function on I +.

But Tab is a stress tensor, so we expect the integral of F over I + to give the total energy11.

Thus, we take our ansatz for a single outgoing graviton incident on I + to be

T00(u, x̂) = −Ω2Eδ(u− u∗)δ(2)(x̂− k),

for some u∗. We want to calculate the change in asymptotic shear, ∆σ0 =
∫

duσ̇0. To

infer ∆σ0 on I + we study the leading contributions to hab for large r = |x| where this

limit is taken with fixed u = x0− r. We begin by computing the contribution to hab from

an outgoing graviton, which comes from Tab near I +. Recalling the retarded Green’s

function K− we have

hab(x) = 4G

∫
I−(x)

d4x′ Tab(x
′)

1

|x− x′| δ(x
0 − x′0 − |x− x′|).

10To see how this can also be inferred from the dominant energy condition see ref. [29].
11In Christodoulou’s notation [2], one has

∫
duF = F/4π. In ref. [27] one has F = dE/dΩ.
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We write u′ = x′0 − r′ so that

hab(x) = 4G

u∫
−∞

du′
∫
r′2dr′

∫
dµ′ Tab(x

′)
1

|x− x′| δ(r + u− r′ − u′ − |x− x′|).

The stress tensor fixes the angular integral and the integral over u′. So

hab(x) = −4GΘ(u− u∗)
∫

dr′
Ekakb +O(r−1)

|x− r′k| δ(r + u− r′ − u∗ − |x− r′k|).

A short calculation gives

∂

∂r′
(−r′ − |x− r′k|) =

1

|x− r′k| (−r
′ + x · k− |x− r′k|) . (21)

Given this, we can fix r′ using the delta function to find12

hab(u, z, z̄) = −4GΘ(u− u∗)
Ekakb +O(r−1)

−r − u+ u∗ + rx̂ · k

We can determine the contribution from incoming gravitons near I − in a similar way.

For incoming gravitons we take T00 to be positive (rather than negative as before). Our

convention is that all momenta are future-pointing, and so, because x′−x is past-pointing

for x′ near I − and x near I + we must be careful when comparing the direction x̂′ with

the direction k. Indeed, for x near I + we must take, for incoming gravitons,

T00(u′, x̂′) = Ω2Eδ(u′ − v∗)δ(2)(x̂′ + k∗).

Being careful about the sings that appear in equation (21) we find, for a single incoming

graviton,

hab(x) = 4GΘ(v∗ − u)
Ekakb +O(r−1)

r + u− v∗ − rx̂ · k
+O(r−2).

12As pointed out by ref. [29] this result is singular when x̂ = k. So one might prescribe that we perform
the integration only for x̂ 6= k. The appearance of a pole is not surprising for a scattering problem and
we will recover the same pole in §5.2.
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So, for multiple gravitons with energies Ei and momenta pi = Ei(1,ki), the total change

in the asymptotic metric near I + is

∆+hab(x̂) =

∫
du ḣab(u+ r, rx̂) =

4G

r

∑
i

ηipiap
i
b

q · pi +O(r−2), (22)

where ηi is +1 for outgoing gravitons and −1 for incoming and q = (1, x̂). Since we are

working in transverse-traceless gauge, we must understand the RHS to be the transverse-

traceless part of the given expression (obtained, e.g., by acting on the spatial components

with a projection δij − x̂ix̂j). This result then agrees with [27,28,30]. We can determine

the change in metric near I − in the same way except that we use an advanced propagator.

Repeating the calculation one finds

∆−hab(x̂) =

∫
dv ḣab(v − r, rx̂) =

4G

r

∑
i

ηipiap
i
b

q̄ · pi +O(r−2),

where q̄ = (1,−x̂). As mentioned above, one problem with this calculation is that it

assumes global flat coordinates. However, we are surprised to find that ∆+hab(x̂) and

∆−hab(x̂) are the same for antipodal directions on the celestial sphere of a point on the

interior of the spacetime. We will find something analogous in §5.2.

5.2 Memory from the Soft Factor

Soft gravitons are large wavelength metric fluctuations. This suggests that we could relate

changes in the shear over long distances to soft gravitons. In this section, we find that

the change in shear is essentially given by the soft factor. We begin by computing the

memory near I +. We take a Bondi system of coordinates u, r, z, z̄. We can associate

to this a set of coordinates with x0 = u + r, xi = rx̂, where x̂ is a unit spatial vector

corresponding to z. In these coordinates the metric is asymptotically Minkowski and we

can expand κhab = gab − ηab into modes,

hab(x) = κ

∫
d3q

(2π)3(2ω)

(
εmabam(q)e−iq·x + ε∗maba

†
m(q)eiq·x

)
,
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where q0 = ω = |q|. Here m is summed over the two helicities. If we write ω cos θ = x̂ · q

then

hab(x) =
κ

2(2π)3

∫ ∞
0

dω ω

∫
dµ
(
εmabam(q)(q)eiωu+iωr(1−cos θ) + h.c.

)
,

where dµ is the measure on the unit sphere. We now consider the large r limit with

fixed u. By the method of stationary phase, we see that the leading contributions to the

angular integral are of order O(1/r) and come from integrating near θ = 0 and θ = π,

where f(θ, φ) = ω(1 − cos θ) is stationary. Near these points we can expand f in local

coordinates to find f ≈ ω(a2 + b2)/2 + ... near θ = 0 and f ≈ ω(2− (a2 + b2)/2) + ... near

θ = π. It follows that the Hessian of f has determinant ω at both points, while it has

sign +2 at θ = 0 and −2 at θ = π. Then equation (28) from appendix B gives

∫
dΩ am(q)eiωr(1−cos θ) =

2π

iωr
am(ωx̂)− 2π

iωr
e2iωram(−ωx̂) +O

(
r−2
)
.

However, the integral
∫∞

0
dω exp(2iωr) is of order O(r−1) (see appendix B). So the leading

contribution to hab(x) near I + is given only by the θ = 0 contribution. The a† term is

similar (but for a sign) and we find

hab(x) =
1

r

κ

2(2π)2i

∞∫
0

dω
(
εmabam(ωx̂)eiωu − ε∗maba†m(ωx̂)e−iωu

)
+O(r−2).

We compute ∆+hab(x̂) by taking a u-derivative and integrating. The u-integral creates

delta functions which each give 1/2 when integrated over the domain ω ∈ [0,∞). Alter-

natively, one can see this as a ω → 0+ limit of

∆+hωab(x̂) ≡ 1

2

∫
du
(
eiωuḣab(x̂) + e−iωuḣab(x̂)

)
.

In this way we find

∆+hab(x̂) = lim
ω→0+

κ

8πr
ω
(
εmabam(ωx̂) + ε∗maba

†
m(ωx̂)

)
.
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The I − calculation is similar. Near I − we take a Bondi system of coordinates v, r, w, w̄.

From this we construct coordinates with y0 = v − r and yi = rŷ. We can do a mode

expansion in these coordinates. The function that we previously called f is now −ω(1 +

cos θ). This has significant consequences: by the same argument as above, the leading

contribution to hab comes from θ = π (not θ = 0). Moreover, near θ = π, the Hessian of

f has sign −2 (not +2 as before). This introduces an overall change in sign. Our final

result is

∆−hab(ŷ) = − lim
ω→0+

κ

8πr
ω
(
εmabbm(−ωŷ) + ε∗mabb

†
m(−ωŷ)

)
. (23)

Where b, b† are the modes near I −. If we promote the modes to operators via canonical

quantisation, the a modes annihilate the out states, while the b modes annihilate the in

states. Then, using equation (19) we find

〈
∆+hab(x̂)

〉
=
〈out|∆+ĥab(x̂) |in〉

〈out | in〉 =
κ

2

κ

8πr

∑
i,m

ηiEikick
i
d

1− x̂ · ki ε
mcd(ωx̂)εmab(ωx̂) +O(r−2) (24)

where i runs over all hard momenta. This result agrees with the flat space result, equation

(22), except that now the transverse-traceless property is neatly given by a projection onto

the polarisations. Similarly

〈
∆−hab(ŷ)

〉
=

2G

r

∑
i,m

ηiEikick
i
d

1 + ŷ · ki ε
∗mcd(−ωŷ)ε∗mab(−ωŷ) +O(r−2).

Notice that the minus sign from the second soft factor cancels with the minus sign in

equation (23) so that the overall sign is as for the I + result. Our calculation involves

two distinct sets of Bondi coordinates for I + and I −. We recall Ashtekar’s construction

(§2.1) of spacelike infinity i0. This allows the null generators of I + to be identified with

those of I −. We can thus use one set of coordinates on the sphere for both I ±. Consider

the null ray on I − corresponding to the null generator labelled by z on I +. Motivated

by the formulae above we choose to label this by w = −1/z̄, such that ŷ = −x̂. In these

coordinates it is manifest that the memory along one null generator near I + is the same

as that for the corresponding generator near I −.
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5.3 Properties of the Memory

A remarkable consequence of the above results is that the displacements of a sphere

of detectors in the future of a graviton scattering event are sufficient to determine all

scattering data: the energies and directions of both outgoing and incoming particles. We

can make this statement more explicit by computing ∆σ0. We take a Bondi system of

coordinates with z the stereographic coordinate corresponding to x̂, and wi corresponding

to the momenta ki. In Minkowksi coordinates x̂ has components P−1(z+ z̄,−i(z− z̄), 1−

zz̄). Note that a 1-form Va given in Minkowski coordinates has z-component

Vz = ∂z x
a Va =

(1− z̄2)V1 − i(1 + z̄2)V2 − 2z̄V3

P 2
r

when expressed in stereographic coordinates. We also want to find εmab(ki) = εma (ki)ε
m
b (ki)

such that εm(ki) ·ki = εm(ki) · εm(ki) = 0. We also choose a normalisation ε+(ki) · ε−(ki) =

−1. Then, we can take

ε+ a(ki) =
1√
2

(w̄i, 1,−i,−w̄i), and ε− a(ki) =
1√
2

(wi, 1, i,−wi).

To compute ∆σ̄0 we must find ∆+hzz. But we compute that

ε+z (ωx̂) = 0, and ε−z (ωx̂) = −
√

2r

P
.

So the only contribution to ∆+σ̄0 is from m = − (while ∆+σ0 can be found from m = +).

Moreover, we find that

ki · ε−(x̂) =

√
2(z − wi)
1 + wiw̄i

, and 1− x̂ · ki =
2(z − wi)(z̄ − w̄i)
(1 + wiw̄i)(1 + zz̄)

.

Altogether, and using equation (24), we find

∆+σ̄0 = 2G

∫
d2w

(
z − w
z̄ − w̄

1 + zz̄

1 + ww̄

)(∑
i

ηiEi δ(2)(w − wi)
)
. (25)
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The expression in the first parenthesis is a Green’s function for ð2. Acting on it with ð2

gives13 2πδ(2)(z − w). So

ð2∆+σ̄0(z, z̄) = 4πG
∑
i

ηiEiδ(z − wi).

In this way, one can infer the energies of the gravitons directly from the displacements of

a sphere of masses: up to the limit imposed by the spacing of the masses14. We can use

our earlier result, equation (7), to determine the change in Bondi mass that results from

the passage of gravitons to I +. We find

∆MB =
∑
k

ηkEk −
1

4πG

∫
du

∫
dµ σ̇0 ˙̄σ0.

By the conservation of energy, the sum vanishes. (Notice that our earlier statement that

ð2 ˙̄σ0 has no l = 0 component has now become the conservation of energy.) Otherwise,

we see that the only contribution to ∆MB is due to the news and it is non-positive – in

agreement with the mass loss formula. For the case we are considering, all the scattering

products are massless gravitons and MB → 0 as u→∞15. We thus infer that the Bondi

mass in the u→ −∞ limit, is

MB →MADM =
1

4πG

∫
du

∫
dµ σ̇0 ˙̄σ0.

The computation for I − shows that MADM is also the integrated news on I −. We thus

infer that the integrated advanced news is the same as the integrated retarded news.

13See also equations (2.24)-(2.25) of ref. [5].
14It is reassuring to see that our determination of the energies in this way is Lorentz invariant (in

the case of Minkowski spacetime). Lorentz transformations on Minkowski space induce global conformal
transformations on the sphere at null infinity. Both sides of the equation have the same conformal weight:
so that the Ei inferred from our equation are unaffected by Lorentz transformations.

15Indeed, Christodoulou and Klainerman found bounds on the rate of decay in ref. [2].
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6 No Particle is Forgotten

Processes involving massive objects have long been known to emit long wavelength gravita-

tional radiation that result in a memory effect. This result can be derived using linearised

gravity, as in section 5, except that the energy-momentum tensor is now taken to have

contributions from massive particles [30, 31]. However, as we discussed in section 4, the

amplitudes for massive particles (of any spin) have the same soft graviton factorisation

that we found for graviton amplitudes. Thus, the calculation that we did in §5.2 allows us

to find the change in the asymptotic metric near I + due to the scattering of massive par-

ticles. To make direct contact with the original formulas we omit the mild complication

of using helicities and simply understand the RHS of the formula to be the transverse-

traceless component of the expression. Then, for massive particles with momenta pi we

have

∆+hab(x̂) =
4

r

∑
i

ηipiap
i
b

pi · x =
4

r

∑
i

ηimi√
1− v2

i

viav
i
b

1− |vi| cos θ
+O(r−2),

where pia = (1 − v2
i )
−1/2mivia. This agrees with the equations quoted in refs. [27, 30]. To

find the proper displacements we compute ∆σ0 using stereographic coordinates. For some

velocity v we then find a z-component vz = P−1rv sin θ, where θ is the angle between the

point z on the sphere and the point on the sphere corresponding to v. Then we find

∆+σ0 =
∑
i

2ηimi√
1− v2

i

v2
i sin2 θi

1− vi cos θi
. (26)

This gives proper length displacements (via equation (14)) that agree with those derived

through different methods in ref. [31]. As in the massless case, we would like to this result

to the mass aspect. Unlike the massless case, we do not expect MB → 0 near i+. We can

compute the mass aspect of a free massive particle in the following way. The Schwarzschild

metric in a centre of mass frame near I + is g = (−1+2M/r)du2−2dudr+ ..., from which

we see that Ψ = −2M in the COM frame. Suppose we have a tetrad for the Schwarzschild

metric which is related to the COM frame by a boost. It is easy to infer what Ψ0
2 is in this

boosted frame. In fact, in order to preserve the Bondi gauge, one would have to perform
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both a boost and a null rotation around ια. However, under a null rotation around ιA, Ψ2

transforms to Ψ2 + 2λΨ1 +λ2Ψ0, for some λ. So the leading component Ψ0
2 is not affected

by a null rotation. We consider a boost of the form na 7→ K−1na and la 7→ Kla where

K is some combination of l ≤ 1 harmonics. In particular, for a boost with 4-velocity

va = γv(1, 0, 0, v) we take16 K = γv(Y0 + vY 0
1 ). Notice that since l = ∂/∂r, the radial

coordinate associated to the Bondi frame transforms as r 7→ r′ = Kr. Now, ψ2 has boost

weight 0. So, Ψ2 is related to Ψ̂2 by

Ψ2 = Ψ̂2 +O(r−4) = Ψ̂0
2r
′−3 +O(r−4) = Ψ̂0

2

( r
r′

)3

r−3 +O(r−4).

But, in the COM, frame, Ψ̂0
2 = −2M . So

Ψ = −2M

K3
= − 2M

γ3
v(1 + v cos θ)3

,

which agrees with the coordinate calculation performed in Appendix B of ref. [31]. Per-

forming the elementary integral over the sphere gives MB = γvM, which is what we expect

for a massive particle. Moreover, starting from equation (20) one can infer that

ð2∆+σ̄0 = 2
∑

ηiM iK−3
i ,

where we assume that the contribution to ∆σ̄0 is soft and so ignore σ̇0 ˙̄σ0. This is the

starting point for Ludvigsen’s [15] calculation of the memory for massive particles. His

result agrees with the formula, equation (26), that we found from the soft factor.

7 Discussion

We studied the leading order contribution to the memory effect near I + and I − and

related it to Weinberg’s soft factorisation of graviton amplitudes. We found that the lead-

ing order displacements can be used to infer scattering data. Moreover, we found that

16One can choose the harmonics to be normalised such that 〈K,K〉 = vava = 1 where 〈 , 〉 is the
Lorentzian inner product on the l ≤ 1 harmonics [15].
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the memory effect near a generator of I + is the same as for the corresponding generator

of I −: where the null generators are matched at i0. This is not an obvious result. From

our calculation, we see that it is a consequence of the soft factorisation of graviton ampli-

tudes. This, in turn, can be regarded as the Ward identity for diagonal supertranslations.

Soft gravitons could be regarded as the Goldstone bosons of this symmetry (which is a

symmetry of the S-matrix but not of the interior spacetime). Hence, the memory effected

by soft gravitons ought to be equivalent to the displacements induced by the action of

some diagonal supertranslation. By this reasoning, the memory effect should indeed be

the same on diagonally identified generators. This appears to explain our result. We also

remarked that the integrated news is the same for I + and I −. This does not appear

as a consequence of the diagonal supertranslation symmetry, but as a consequence of

energy conservation (which corresponds to a translation subgroup of the diagonal super-

translations). Finally, let us comment on loop corrections. The leading order memory

effect that we have calculated is not affected by loop corrections since it involves only the

leading term in the soft expansion of the amplitudes (which is tree-level exact). How-

ever this would no longer be the only contribution if we considered geodesic deviation at

a finite-radius or for a finite-time. To compute the memory in this case would involve

integrating over soft gravitons with a range of energies near ω = 0. (Some remarks on

finite-radius, finite-time conservation laws recently appeared in appendix D of ref. [32].)

In contrast with §5.2, in which we took the ω → 0 limit, such a calculation would involve

the subleading terms that appear in the soft expansions of the amplitudes. But these are

sensitive to loop corrections (as recently discussed in ref. [23]). This calculation does not

appear to have been done.

A Peeling Theorems

Let oA, ιA be the spin frame corresponding to the metric gab employed in §2. Then we

can construct a spin frame for ĝab = Ω2gab by choosing, ôA = Ω−1oA, ôA = oA. One can

verify that ôA is parallel transported with respect to l̂a = ôA ˆ̄oȦ. However, ιA is not. So
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we define ι̂A so that ι̂A ≈ ιA and ι̂A is parallel transported with respect to l̂a. Now, we

would like to write N̂a in terms of the tetrad components. To this end, introduce an affine

parameter r̂ such that r̂ ≈ 0 and n̂a = ∂ar̂. Notice that r̂ is increasing along the null

geodesics generated by la since la∂ar̂ = 1. So, we can expand Ω along one of these null

geodesics:

Ω = Ω1 r̂ + Ω2 r̂
2 + Ω3 r̂

3 +O(r̂4).

We compute,

d2Ω

dr̂2
= (l̂a∇̂al̂

b)∇̂bΩ + l̂al̂b∇̂a∇̂bΩ = l̂al̂b∇̂a∇̂bΩ,

where we have used the geodesic equation. However, it follows from equation (1) together

with the C>2 smoothness of ĝab and Ω that l̂al̂b∇̂a∇̂bΩ ≈ 0. So the expansion becomes

Ω = Ω1r̂ + Ω3 r̂
3 +O(r̂4). (27)

Taking derivatives gives

N̂a = (Ω1 +O(Ω2))n̂a +O(Ω3),

which follows from the definitions of N̂a and n̂a in terms of Ω and r̂. In §2.3 we adopt a

frame satisfying l̂a∇aΩ ≈ −1. For this frame one has Ω1 = −1. We can expand r̂ and Ω

in terms of the affine parameter r for the la geodesics. Indeed, since l̂a = Ω−2la we have

dr̂/dr = Ω2. Using equation (27) we can perform this integration to find

r = −Ω−2
1 r̂−1 + B0 + B1r̂ +O(r̂2),

for some smooth Bi. We can invert this expansion for r̂ to find

r̂ = −Ω−2
1 r−1 + C2r

−2 +O(r−3), and Ω = Ω−1
1 r−1 +D2r

−2 +O(r−3).
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Consider now a conformal density A of weight −w. Then, under a conformal transforma-

tion gab 7→ Ωĝab we have A 7→ Â = Ω−wA. We assume that Â is C>2 so that

Â = Â0 + Â1r̂ + Â2r̂
2 +O(r̂3).

Then, using the large r expansions for r̂ and Ω, we find

A = Ω−w1 Â0r
−w +A1r

−w−1 +O(r−w−2).

This is the peeling theorem for scalar densities. We find a similar result for tensor densities.

Let TA... be a tensor density of weight −w and let

A = TA...B...Ȧ...Ḃ... o
A... ōȦ...︸ ︷︷ ︸

p

ιB... ῑḂ...

be a component with p o or ō indices. We have ôA = Ω−1oA and one can show that

ι̂A = ιA +O(Ω). Given this it follows that

A = Ωw+p T̂A...B...Ȧ...Ḃ... ô
A... ˆ̄oȦ...︸ ︷︷ ︸

p

(ι̂B +O(Ω))... (ˆ̄ιḂ +O(Ω))...

So, assuming T̂ is C>2 near I , we find an expansion

A = A0r
−w−p +A1r

−w−p−1 +O(r−w−p−2).

B Stationary Phase

In the text we claimed that integrals of the form

I =

∫
A

dxφ(x)eirf(x)
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only receive contributions from neighbourhoods of stationary points satisfying df = 0.

To see this, consider the same integral over an open subset B ⊂ A such that df 6= 0

on B. Then, if φ is a Ck function we can perform integration by parts k times to

find that the integral is O(r−k). So we restrict ourselves to small neighbourhoods of

stationary points. On these neighbourhoods we take normal coordinates yi such that

f = f∗ + (y2
1 + ...+ y2

s − y2
s+1 − ...− y2

n)/2. Notice that

diag(1, ... ,−1, ... ) =
∂2f

∂yi∂yj
=
∂xm
∂yi

∂2f

∂xm∂xn

∂xn
∂yj

.

So |det(∂y/∂x)| = H−1/2, where H is the determinant of the Hessian of f in the original

coordinates. Thus, the integral over the neighbourhood around one critical point takes

the form

I∗ =
eirf∗√
H

∫
dyφ(y)e

ir
2 (y21+...+y2s−y2s+1−...−y2n).

If we Taylor expand φ(y) = φ(0)+yi∂iφ(0)+O(y2) we can perform integration by parts k

times on the O(yk) terms to find that these are O(r−k). The leading term involving φ(0)

is just a product of Gaussian integrals. Performing these integrals we conclude that

I∗ =

(
2π

r

)n/2
e
iπ
4

(n−2s) e
irf∗

√
H∗

φ∗. (28)

Notice that 2s−n is just the signature of the Hessian evaluated at the critical point. This

result is the stationary phase formula. For further remarks on this result see ref. [33].

Finally, we consider
∫

dω exp(−2iωr). The partial integral is

Ia =

∫ a

0

dωe−2iωr =
i

2r

[
e−2iar − 1

]
= − i

r
e−iar sin(ar).

We see that |Ia| ≤ r−1. This bound doesn’t depend on a, and so
∫

dω exp(−2iωr) =

O(r−1). This is used, along with the stationary phase formula, in section 5.
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